Performance Test Methods of Image Guidance Head Based on Unmanned Aerial Vehicle Platform

WANG Yi, LI Na, LI Kai, XIA Xianliang, HOU Bingxin

Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 25-32.

PDF(3959 KB)
PDF(3959 KB)
Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 25-32. DOI: 10.7643/ issn.1672-9242.2026.01.004
Weapons Equipment

Performance Test Methods of Image Guidance Head Based on Unmanned Aerial Vehicle Platform

  • WANG Yi, LI Na*, LI Kai, XIA Xianliang, HOU Bingxin
Author information +
History +

Abstract

The work aims to ensure the reliability of image guidance heads. To address the performance testing requirements of the image guidance head, a testing method based on an unmanned aerial vehicle (UAV) system was proposed with focuses on dynamic performance and environmental adaptability tests. Through comparative verification between semi-physical simulation laboratory tests of the image guidance head and actual flight experiments with the head mounted on a UAV, key performance indicators such as recognition rate, tracking accuracy, and anti-interference capability were quantitatively evaluated. The research results showed that when the image guidance head was mounted on a UAV for flight testing, its recognition results were consistent with those obtained in the semi-physical simulation laboratory. The deviation in the line-of-sight angular velocity test results was only 0.1 °/s. To fully validate the performance metrics of the image guidance head under terminal-guided flight test conditions, conducting tests using UAVs as the test platform with new technologies and methods holds significant importance.

Key words

unmanned aerial vehicle (UAV) / image guidance head / recognition / tracking / re-capture / performance testing

Cite this article

Download Citations
WANG Yi, LI Na, LI Kai, XIA Xianliang, HOU Bingxin. Performance Test Methods of Image Guidance Head Based on Unmanned Aerial Vehicle Platform[J]. Equipment Environmental Engineering. 2026, 23(1): 25-32 https://doi.org/10.7643/ issn.1672-9242.2026.01.004

References

[1] 魏政, 杜勇, 刘辉, 等.多模复合制导技术的发展现状与分析[J].航空兵器, 2022, 29(6): 26-33.
WEI Z, DU Y, LIU H, et al.Development Status and Analysis of Multi-Mode Composite Guidance Technology[J].Aero Weaponry, 2022, 29(6): 26-33.
[2] 黄瑞松, 李海凤, 刘金, 等.飞行器半实物仿真技术现状与发展趋势分析[J].系统仿真学报, 2019, 31(9): 1763-1774.
HUANG R S, LI H F, LIU J, et al.Status and Development Analysis of Hardware-in-Loop Simulation Technologies for the Aircraft[J].Journal of System Simulation, 2019, 31(9): 1763-1774.
[3] 吕隽, 张兴有.反舰导弹导引头抗干扰能力综合评估方法[J].战术导弹技术, 2017(3): 47-51.
LYU J, ZHANG X Y.Research on Comprehensive Evaluation Method of Anti-Jamming Index for Anti-Ship Missile Seeker[J].Tactical Missile Technology, 2017(3): 47-51.
[4] 汤恒仁.美国机载导弹导引头专用试验机发展综述[J].飞航导弹, 2018(5): 62-67.
TANG H R.Review on the Development of Special Testing Machine for Airborne Missile Seeker in the United States[J].Aerodynamic Missile Journal, 2018(5): 62-67.
[5] 祁圣君, 张立丰.美国军用无人系统综述[J].飞航导弹, 2015(7): 21-24.
QI S J, ZHANG L F.Overview of American Military Unmanned System[J].Aerodynamic Missile Journal, 2015(7): 21-24.
[6] 赵志俊, 郑浩, 孟祥喆.基于无人机的半主动式小型激光导引头试飞技术研究[J].应用力学学报, 2021, 38(5): 2032-2036.
ZHAO Z J, ZHENG H, MENG X Z.Flight Test Technology of Semi-Active Small Laser Seeker Based on UAV[J].Chinese Journal of Applied Mechanics, 2021, 38(5): 2032-2036.
[7] 徐海.无人机搭载导引头在试验训练中的应用研究[J].飞航导弹, 2017(5): 92-95.
XU H.Research on the Application of UAV Carrying Seeker in Experimental Training[J].Aerodynamic Missile Journal, 2017(5): 92-95.
[8] 王世立.无人机搭载反舰导弹雷达导引头抗干扰测试方法分析[J].舰船电子工程, 2018, 38(6): 100-103.
WANG S L.Analysis of Anti-Jamming Test Method for Anti-Ship Missile Radar Seeker Based on UAV[J].Ship Electronic Engineering, 2018, 38(6): 100-103.
[9] 张羚, 董淑福, 孙启禄, 等.无人机系统指挥控制与通信研究[J].飞航导弹, 2015(12): 34-38.
ZHANG L, DONG S F, SUN Q L, et al.Research on Command, Control and Communication of UAV System[J].Aerodynamic Missile Journal, 2015(12): 34-38.
[10] 张洋, 廖南杰.美军空地制导弹药发展策略分析[J].飞航导弹, 2021(11): 86-90.
ZHANG Y, LIAO N J.Analysis on Development Strategy of Air-to-Ground Guided Ammunition of US Army[J].Aerodynamic Missile Journal, 2021(11): 86-90.
[11] 左卫, 周波华, 李文柱.多模及复合精确制导技术的研究进展与发展分析[J].空天防御, 2019, 2(3): 44-52.
ZUO W, ZHOU B H, LI W Z.Analysis of Development of Multi-Mode and Compound Precision Guidance Technology[J].Air & Space Defense, 2019, 2(3): 44-52.
[12] 袁全盛, 胡永江, 王长龙.无人机中继通信的关键技术与发展趋势[J].飞航导弹, 2015(10): 26-29.
YUAN Q S, HU Y J, WANG C L.Key Technology and Development Trend of UAV Relay Communication[J].Aerodynamic Missile Journal, 2015(10): 26-29.
[13] 韦卓, 黄建忠, 陈俊彪, 等.“人在回路”成像导引头外场半实物仿真试验方法[J].测试技术学报, 2014, 28(2): 177-179.
WEI Z, HUANG J Z, CHEN J B, et al.Simulation Test Method of Hardware in Loop Outside of “People in Loop” Imaged Guided Head of Missile[J].Journal of Test and Measurement Technology, 2014, 28(2): 177-179.
[14] 张原, 乔彦峰.导弹红外导引头试验评估设施综述[J].飞航导弹, 2016(2): 84-88.
ZHANG Y, QIAO Y F.Summary of Test and Evaluation Facilities for Missile Infrared Seeker[J].Aerodynamic Missile Journal, 2016(2): 84-88.
[15] 赵永亮, 张天孝.红外成像导引头抗干扰技术研究[J].航天电子对抗, 2009, 25(1): 14-16.
ZHAO Y L, ZHANG T X.Anti-Jamming Technique for Infrared Imaging Seeker[J].Aerospace Electronic Warfare, 2009, 25(1): 14-16.
[16] 杨宝庆, 马杰, 姚郁.飞行器半实物仿真装备研究进展与展望[J].宇航学报, 2020, 41(6): 657-665.
YANG B Q, MA J, YAO Y.Research Progress and Prospects of Flight Vehicle Simulators for HWIL Simulation[J].Journal of Astronautics, 2020, 41(6): 657-665.
[17] 宁立跃, 胡仕友.导弹导引头智能感知抗干扰性能评估方法研究[J].战术导弹技术, 2020(4): 119-124.
NING L Y, HU S Y.Research on the Evaluation Method of Intelligent Sensing Anti-Jamming Performance of Missile Seeker[J].Tactical Missile Technology, 2020(4): 119-124.
[18] 代宇, 吴辉, 钟小兵, 等.炮射导弹图像导引头抗旋转技术研究进展[J].火炮发射与控制学报, 2022, 43(6): 81-87.
DAI Y, WU H, ZHONG X B, et al.Research Progress of Anti-Rotation Technology for the Image Seeker of Gun-Launched Missiles[J].Journal of Gun Launch & Control, 2022, 43(6): 81-87.
[19] 李召, 徐文旭, 王磊.反装甲导弹导引头抗干扰能力与关键技术发展[J].兵工自动化, 2024, 43(3): 1-6.
LI Z, XU W X, WANG L.Anti-Jamming Capability and Key Technology Development of Anti-Armor Missile Seeker[J].Ordnance Industry Automation, 2024, 43(3): 1-6.
[20] 王学伟, 熊璋, 沈同圣, 等.光电成像导引头抗干扰性能评估方法[J].光电工程, 2003, 30(1): 56-58.
WANG X W, XIONG Z, SHEN T S, et al.An Evaluation Method for Anti-Interference Performance of Photoelectric Imaging Guiding Head[J].Opto-Electronic Engineering, 2003, 30(1): 56-58.
[21] 吴泽民, 丁冉, 田畅.一个坐标转换公式的正确形式的证明[J].弹箭与制导学报, 2009, 29(1): 264-266.
WU Z M, DING R, TIAN C.The Proof of One Coordination Conversion Formula[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 264-266.
[22] 张兴福, 沈云中.一种实用的GPS坐标及高程同步转换方法[J].大地测量与地球动力学, 2011, 31(3): 63-68.
ZHANG X F, SHEN Y Z.A Practical Method for Synchronous Transformation of GPS Coordinate and Height[J].Journal of Geodesy and Geodynamics, 2011, 31(3): 63-68.
[23] 庞博, 李艳红, 田义, 等.雷达/红外复合导引及半实物仿真技术发展与展望[J].空天防御, 2023, 6(4): 17-23.
PANG B, LI Y H, TIAN Y, et al.Progress and Prospect of Radar/Infrared Compound Guidance and Hardware-in-the-Loop Simulation Technology[J].Air & Space Defense, 2023, 6(4): 17-23.
[24] 顾振杰.射频/红外双模复合制导仿真试验系统[J].制导与引信, 2022, 43(3): 9-12.
GU Z J.RF/IR Dual-Mode Composite Guidance Simulation Test System[J].Guidance & Fuze, 2022, 43(3): 9-12.
PDF(3959 KB)

Accesses

Citation

Detail

Sections
Recommended

/